Copied to
clipboard

G = C42.3F5order 320 = 26·5

3rd non-split extension by C42 of F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.3F5, C20.19C42, C20.7M4(2), C5⋊C163C4, (C4×C20).9C4, C53(C16⋊C4), C4.26(C4×F5), C4.4(C4.F5), C10.5(C8⋊C4), C20.C8.1C2, (C2×C10).17M4(2), C42.D5.10C2, C2.3(C10.C42), C22.2(C22.F5), (C2×C52C8).4C4, C52C8.18(C2×C4), (C2×C4).113(C2×F5), (C2×C20).134(C2×C4), (C2×C52C8).211C22, SmallGroup(320,198)

Series: Derived Chief Lower central Upper central

C1C20 — C42.3F5
C1C5C10C20C52C8C2×C52C8C20.C8 — C42.3F5
C5C20 — C42.3F5
C1C4C42

Generators and relations for C42.3F5
 G = < a,b,c,d | a4=b4=c5=1, d4=b, ab=ba, ac=ca, dad-1=ab-1, bc=cb, bd=db, dcd-1=c3 >

2C2
4C4
2C10
2C2×C4
5C8
5C8
10C8
4C20
5C2×C8
5C16
5C16
5C2×C8
5C16
5C16
2C2×C20
2C52C8
5M5(2)
5C8⋊C4
5M5(2)
5C16⋊C4

Smallest permutation representation of C42.3F5
On 80 points
Generators in S80
(2 14 10 6)(3 11)(4 8 12 16)(7 15)(18 30 26 22)(19 27)(20 24 28 32)(23 31)(34 46 42 38)(35 43)(36 40 44 48)(39 47)(49 61 57 53)(50 58)(51 55 59 63)(54 62)(65 73)(66 70 74 78)(68 80 76 72)(69 77)
(1 5 9 13)(2 6 10 14)(3 7 11 15)(4 8 12 16)(17 21 25 29)(18 22 26 30)(19 23 27 31)(20 24 28 32)(33 37 41 45)(34 38 42 46)(35 39 43 47)(36 40 44 48)(49 53 57 61)(50 54 58 62)(51 55 59 63)(52 56 60 64)(65 69 73 77)(66 70 74 78)(67 71 75 79)(68 72 76 80)
(1 75 25 41 60)(2 42 76 61 26)(3 62 43 27 77)(4 28 63 78 44)(5 79 29 45 64)(6 46 80 49 30)(7 50 47 31 65)(8 32 51 66 48)(9 67 17 33 52)(10 34 68 53 18)(11 54 35 19 69)(12 20 55 70 36)(13 71 21 37 56)(14 38 72 57 22)(15 58 39 23 73)(16 24 59 74 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (2,14,10,6)(3,11)(4,8,12,16)(7,15)(18,30,26,22)(19,27)(20,24,28,32)(23,31)(34,46,42,38)(35,43)(36,40,44,48)(39,47)(49,61,57,53)(50,58)(51,55,59,63)(54,62)(65,73)(66,70,74,78)(68,80,76,72)(69,77), (1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32)(33,37,41,45)(34,38,42,46)(35,39,43,47)(36,40,44,48)(49,53,57,61)(50,54,58,62)(51,55,59,63)(52,56,60,64)(65,69,73,77)(66,70,74,78)(67,71,75,79)(68,72,76,80), (1,75,25,41,60)(2,42,76,61,26)(3,62,43,27,77)(4,28,63,78,44)(5,79,29,45,64)(6,46,80,49,30)(7,50,47,31,65)(8,32,51,66,48)(9,67,17,33,52)(10,34,68,53,18)(11,54,35,19,69)(12,20,55,70,36)(13,71,21,37,56)(14,38,72,57,22)(15,58,39,23,73)(16,24,59,74,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (2,14,10,6)(3,11)(4,8,12,16)(7,15)(18,30,26,22)(19,27)(20,24,28,32)(23,31)(34,46,42,38)(35,43)(36,40,44,48)(39,47)(49,61,57,53)(50,58)(51,55,59,63)(54,62)(65,73)(66,70,74,78)(68,80,76,72)(69,77), (1,5,9,13)(2,6,10,14)(3,7,11,15)(4,8,12,16)(17,21,25,29)(18,22,26,30)(19,23,27,31)(20,24,28,32)(33,37,41,45)(34,38,42,46)(35,39,43,47)(36,40,44,48)(49,53,57,61)(50,54,58,62)(51,55,59,63)(52,56,60,64)(65,69,73,77)(66,70,74,78)(67,71,75,79)(68,72,76,80), (1,75,25,41,60)(2,42,76,61,26)(3,62,43,27,77)(4,28,63,78,44)(5,79,29,45,64)(6,46,80,49,30)(7,50,47,31,65)(8,32,51,66,48)(9,67,17,33,52)(10,34,68,53,18)(11,54,35,19,69)(12,20,55,70,36)(13,71,21,37,56)(14,38,72,57,22)(15,58,39,23,73)(16,24,59,74,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(2,14,10,6),(3,11),(4,8,12,16),(7,15),(18,30,26,22),(19,27),(20,24,28,32),(23,31),(34,46,42,38),(35,43),(36,40,44,48),(39,47),(49,61,57,53),(50,58),(51,55,59,63),(54,62),(65,73),(66,70,74,78),(68,80,76,72),(69,77)], [(1,5,9,13),(2,6,10,14),(3,7,11,15),(4,8,12,16),(17,21,25,29),(18,22,26,30),(19,23,27,31),(20,24,28,32),(33,37,41,45),(34,38,42,46),(35,39,43,47),(36,40,44,48),(49,53,57,61),(50,54,58,62),(51,55,59,63),(52,56,60,64),(65,69,73,77),(66,70,74,78),(67,71,75,79),(68,72,76,80)], [(1,75,25,41,60),(2,42,76,61,26),(3,62,43,27,77),(4,28,63,78,44),(5,79,29,45,64),(6,46,80,49,30),(7,50,47,31,65),(8,32,51,66,48),(9,67,17,33,52),(10,34,68,53,18),(11,54,35,19,69),(12,20,55,70,36),(13,71,21,37,56),(14,38,72,57,22),(15,58,39,23,73),(16,24,59,74,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

38 conjugacy classes

class 1 2A2B4A4B4C4D4E 5 8A8B8C8D8E8F10A10B10C16A···16H20A···20L
order12244444588888810101016···1620···20
size11211244410101010202044420···204···4

38 irreducible representations

dim111111224444444
type+++++-
imageC1C2C2C4C4C4M4(2)M4(2)F5C2×F5C16⋊C4C4.F5C4×F5C22.F5C42.3F5
kernelC42.3F5C42.D5C20.C8C5⋊C16C2×C52C8C4×C20C20C2×C10C42C2×C4C5C4C4C22C1
# reps112822221122228

Matrix representation of C42.3F5 in GL4(𝔽241) generated by

1000
024000
00640
000177
,
64000
06400
00640
00064
,
91000
09800
00870
000205
,
0010
0001
0100
64000
G:=sub<GL(4,GF(241))| [1,0,0,0,0,240,0,0,0,0,64,0,0,0,0,177],[64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[91,0,0,0,0,98,0,0,0,0,87,0,0,0,0,205],[0,0,0,64,0,0,1,0,1,0,0,0,0,1,0,0] >;

C42.3F5 in GAP, Magma, Sage, TeX

C_4^2._3F_5
% in TeX

G:=Group("C4^2.3F5");
// GroupNames label

G:=SmallGroup(320,198);
// by ID

G=gap.SmallGroup(320,198);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,100,1123,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^4=b,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C42.3F5 in TeX

׿
×
𝔽